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Abstract. Attracting sets for systems of ordinary differential equations, which arise in multiple applications, are 

constructed. The six-dimensional system is in the focus. The construction is based on previously obtained attractors 

for systems of orders two and three. First, the uncoupled six-dimensional system is considered. Adding some 

additional elements makes this system coupled. The attractors, however, remain in a modified form. The graphs 

of all six solutions are provided as visual evidence of the existence of attractors. 
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Introduction 

Dynamic systems mean systems of any nature: physical, chemical, biological, societies and 

populations, ecosystems, as well as financial markets, computing processes, and processes of 

information transformation [1]. In such systems, unstable and stable foci, cycles, and chaotic behavior 

of the system are possible [2]. Cycles are widely used in many areas of natural sciences: radio physics, 

the theory of oscillations, mathematical biology (photosynthesis), chemistry (periodic processes in 

reactions), aviation (aircraft dead loop), automatic control, mathematical economics, astronomy, 

medicine (mental illness). Chaotic behavior can be observed in economics. When a crisis occurs, the 

system loses its dynamic stability and passes to chaos. At the end of time, the economy emerges from 

the crisis, which means that when the parameter changes, there is a transition from chaos to orderly 

movement. With economic development, new lines of business emerge from chaotic behavior. Artificial 

elimination of uncertainty leads to stagnation and degradation of the system since the emergence of 

progressive directions of development is excluded. As it turned out, the necessary condition for the 

emergence of chaos in dynamic systems is a dimension of the phase space 𝑛 ≥  3 when the state of the 

system is characterized by at least three variables. 

We consider systems of ordinary differential equations of order greater than three. These systems 

are of a special form. Let 𝑓𝑖(𝑧) =  [1 +  exp⁡(−𝜇𝑖(𝑧 − 𝜃𝑖))]
−1. The system of ODE consisting of six 

equations is 

 

{
 
 

 
 
𝑑𝑥1

𝑑𝑡
 =  𝑓1(𝑤11𝑥1 +  ⋯  +  𝑤16𝑥6) − 𝑣1𝑥1,

𝑑𝑥2

𝑑𝑡
 =  𝑓2(𝑤21𝑥1 +  ⋯  +  𝑤26𝑥6) − 𝑣2𝑥2,

⋯⋯⋯
𝑑𝑥6

𝑑𝑡
 =  𝑓6(𝑤61𝑥1 +  ⋯  +  𝑤66𝑥6) − 𝑣6𝑥6.

 (1) 

Similar systems of dimensionality two, three, four and arbitrary dimensionality [3] appear in various 

contexts describing neuronal networks [4; 5], genetic networks [6; 7], telecommunication networks [8], 

and more. These type models can reflect an evolution in the time 𝑡 of a network. Network management 

and control is possible by changing the system parameters. There are a lot of them even in two-

dimensional systems.  

 {

𝑑𝑥1

𝑑𝑡
 =  

1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2−𝜃1)
− 𝑣1𝑥1,

𝑑𝑥2

𝑑𝑡
 =  

1

1 + 𝑒−𝜇2(𝑤21𝑥1 + 𝑤22𝑥2−𝜃2)
− 𝑣2𝑥2.

 (2) 

The functions 𝑓𝑖(𝑧) are sigmoidal ones with the characteristic properties 1) monotonically 

increasing from zero to unity; 2) possessing a unique inflection point. [9; 10] There are many sigmoidal 

functions, which can be used in models. For instance, Hill’s function was used in [6], the logistic 

function was tried in [4; 5; 11; 12]. The parameters 𝜇𝑖 , 𝜃𝑖, 𝑣𝑖 characterize the system, while the 

coefficients 𝑤𝑖𝑗 are elements of the matrix 
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 𝑊 =  (

𝑤11 𝑤12 …
𝑤21 𝑤22 …
… … …
𝑤61 𝑤62 …

⁡𝑤16
𝑤26…
𝑤66

). (3) 

This matrix contains information about the interaction of nodes 𝑥𝑖: positive 𝑤𝑖𝑗 means activation 

of 𝑥𝑖 by 𝑥𝑗. Respectively, the negative coefficient means inhibition (repression). Zero entry corresponds 

to no relation. 

The system (1) allows for different interpretations, depending on the field of application. In the 

theory of genetic regulatory networks (GRN) it is understood as a description of possible scenarios of 

network evolution. These scenarios depend on a set of parameters, on the matrix 𝑊; on initial conditions. 

The influence of all these factors is summarized in the description and configuration of the attractors of 

the system (1). In [6] (see also [13]) the solution vector 𝑋(𝑡) =  (𝑥1(𝑡), … , 𝑥6(𝑡)) is treated as the 

current state of a network at a time moment 𝑡. Future states are dependent on the topology of the phase 

space. If 𝑋(𝑡) is the basis of attraction of a particular attractor, it eventually tends to one. We will 

consider attracting sets of the system (1). We construct them by combining attractors that appear in low-

dimensional systems (2D and 3D). 

Materials and methods 

Our consideration is geometrical. All processes of interest to us take place in a bounded 

parallelepiped G and our main intent is to use the 3D projections of the attractor on different subspaces, 

to construct the graphs of solutions for understanding and managing the system. Visualizations, where 

possible, are provided. Computations are performed using Wolfram Mathematics. 

2D systems 

We know two types of attractors in systems (2), namely, stable equilibria and stable periodic 

solutions. Stable critical points easily can be obtained considering activation or inhibitory cases. Periodic 

solutions appear in systems (2) with the regulatory matrices of the form 

 𝑊 =  (
𝑘 2
−2 𝑘

) (4) 

for appropriate positive values of k. Examples can be found in [7]. 

 

Fig. 1. Periodic solution, μ1 = μ2 = 10,⁡θ1 = 1.5,⁡θ2 =-0.5 
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3D systems 

We know that three dimensional systems 

 

{
 
 

 
 
𝑑𝑥1

𝑑𝑡
 =  

1

1 + 𝑒−𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 + 𝑤13𝑥1−𝜃1)
− 𝑣1𝑥1,

𝑑𝑥2

𝑑𝑡
 =  

1

1 + 𝑒−𝜇2(𝑤21𝑥1 + 𝑤22𝑥2 + 𝑤23𝑥3−𝜃2)
− 𝑣2𝑥2,

𝑑𝑥3

𝑑𝑡
 =  

1

1 + 𝑒−𝜇3(𝑤31𝑥1 + 𝑤32𝑥2 + 𝑤33𝑥3−𝜃3)
− 𝑣3𝑥3

 (5) 

can have stable equilibria, stable periodic solutions [3], and a chaotic attractor [4; 5]. 

6D systems 

Consider the six-dimensional system (1). Let the regulatory matrix be 

 𝑊 =  

(

  
 

1 2 0 0 0 0
−2 1 0 0 0 0
0 0 1 2 0 0
0 0 −2 1 0 0
0 0 0 0 1 2
0 0 0 0 −2 1)

  
 
. (6) 

This system consists of three independent two-dimensional systems, which have an attractor 

depicted in Fig. 1. The resulting attractor is a product of three two-dimensional ones and is, therefore, 

periodic. A trial solution with the initial values 

 𝑥1(0) =  0.68, 𝑥2(0) =  0.3, 𝑥3(0) =  0.1, 𝑥4(0) =  0.6, 𝑥5(0) =  0.2, 𝑥6(0) =  0.1 (7) 

was used to reveal the six-dimensional attractor. 

Change now two elements at the right upper (𝑤16) and left lower (𝑤61) corners. Let 

𝑤16 =  𝑤61 =  0.5. The six-dimensional system (1) is already coupled. The trial solution still tends to 

be a periodic attractor (a different one), however. The graphs of all six solutions 𝑥𝑖(𝑡) are depicted in 

Fig. 2 and Fig. 3. Other parameters are  

𝜇𝑖  =  10, 𝑖 =  1,… ,6;⁡𝜃𝑖 =  1.2, 𝑖 =  1,3,5;⁡𝜃𝑗 =  − 0.6, 𝑗 =  2,4,6. 

  

Fig. 2. Graphs of 𝒙𝒊(𝒕), 𝒊 =  𝟏, 𝟐, 𝟑 Fig. 3. Graphs of 𝒙𝒊(𝒕), 𝒊 =  𝟒, 𝟓, 𝟔 

6D system from 3D system 

Our intent now is to create a six-dimensional attractor from three-dimensional ones. For this, we 

take the three-dimensional system (5) with the following set of parameters 

 

𝑣1 =  0.65, 𝑣2 =  0.42, 𝑣3 =  0.1;⁡
𝜇1 =  7, 𝜇2 =  7, 𝜇3 =  13;⁡

𝑤11 =  0,𝑤12 =  1,𝑤13 =  − 5.64;
𝑤21 =  1,𝑤22 =  0,𝑤23 =  0.1;⁡
𝑤31 =  1,𝑤32 =  0.02,𝑤33 =  0;⁡
𝜃1 =  0.5, 𝜃2 =  0.3, 𝜃3 =  0.7.

 (8) 
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The respective three-dimensional system was studied in [4; 5]. The authors of [4; 5] claim that this 

system has a chaotic attractor. It is depicted in Fig. 4. The irregular behavior of three solutions can be 

seen in Fig. 5. 

  

Fig. 4. 3D chaotic attractor Fig. 5. Graphs of 𝒙𝒊(𝒕), 𝒊 =  𝟏, 𝟐, 𝟑 

Consider a six-dimensional system with the regulatory matrix 

 𝑊 =  

(

  
 

0 1 −5.64 0 0 0
1 1 0.1 0 0 0
1 0.02 0 0 0 0
0 0 0 0 1 −5.64
0 0 0 1 0 0.1
0.5 0 0 1 0.02 0 )

  
 
. (9) 

It would be uncoupled if the element 𝑤61be zero. Then we would have a six-dimensional chaotic 

attractor which is the product of two identical three-dimensional attractors as in Fig. 4. But 𝑤61 is set to 

0.5. The six-dimensional system is coupled now. The new chaotic attractor exists and some three-

dimensional projections are depicted in Fig. 6 and Fig. 7. 

  

Fig. 6. Projections of 3D chaotic attractor for 

the case (9) (x4; x5; x6) 

Fig. 7. Projections of the attractor on  

(x2; x4; x5) 

The solutions for the system (1) with the matrix (9) are depicted in Fig. 8 and Fig. 9. The solutions 

have irregular form. They are different in Fig. 8 and Fig. 9 because of the non-zero element 𝑤16. 

  

Fig. 8. Solutions⁡𝒙𝟏(𝒕), 𝒙𝟐(𝒕), 𝒙𝟑(𝒕) Fig. 9. Solutions⁡𝒙𝟒(𝒕), 𝒙𝟓(𝒕), 𝒙𝟔(𝒕) 

Consider the six-dimensional system with parameters  

𝑣1 =  𝑣2 =  𝑣4 =  𝑣5 =  0.5, 𝑣3 =  𝑣6 =  1; 



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 25.-27.05.2022. 

 

176 

𝜇1 =  𝜇2 =  𝜇4 =  𝜇5 =  7, 𝜇3 =  𝜇6 =  12; 

𝜃1 =  0.5, 𝜃2 =  0.3, 𝜃3 =  0.7, 𝜃4 =  0.5, 𝜃5 =  0.3, 𝜃6 =  0.7 

and with the regulatory matrix  

𝑊 =  

(

  
 

0 1 −1 0 0 1.2
1 0 −1 0 0 0
1 0.1 0 0 0 0
0 0 0 0 1 −1
0 0 0 1 0 −1
0 0 0 1 0.1 0 )

  
 

 

The respective results are shown in Figures 10 – 15. 

 

 

 

 

Fig. 10. Solutions⁡𝒙𝒊(𝒕) for the case  

𝒘𝟏𝟔 =  𝟎 

Fig. 11. Solutions⁡𝒙𝒊(𝒕) for the case 

𝒘𝟏𝟔 =  𝟏. 𝟐 

  

Fig. 12. Projections of the attractor  

on (x1; x2; x3) for the case 𝒘𝟏𝟔 =  𝟎 

Fig. 13. Projections of the attractor  

on (x1; x2; x3) for the case 𝒘𝟏𝟔 =  𝟏. 𝟐 

  

Fig. 14. Projections of the attractor  

on (x4; x5; x6) for the case 𝒘𝟏𝟔 =  𝟎 

Fig. 15. Projections of the attractor  

on (x4; x5; x6) for the case 𝒘𝟏𝟔 =  𝟏. 𝟐 

Results and discussion 

Systems of the form (1) are used in modeling diverse complex networks, such as neuronal networks, 

genetic networks, and telecommunication networks. The interrelation between nodes in genetic 

networks is described by a regulatory matrix W. Other adjustable parameters can be used to manage and 

control a network. To trace the evolution of a network one has to consider attractors in a mathematical 

model. Attractors can be studied numerically and occasionally analytically. It is important to study the 

structure of attractors, their locations, and their dependence on the parameters of the system. For high-

dimensional systems, the existence of unknown attractors is expected. The role of these attractors in real 
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genetic networks seems to be the most intriguing problem. In this article we have studied six-

dimensional systems, using elements of reverse engineering, that is, constructing a network with a stable 

periodic attractor. The low-dimensional systems, which were studied before, were used to construct a 

system of dimension six. An attractor for this system is generated by attractors of low-dimensional ones. 

These attractors can be studied numerically and in some cases analytically. New attractors can be 

obtained, using this approach. The system obtained has a block structure. Further investigation can be 

made by filling zero fields with non-zero elements. This is possible without any restrictions on the 

dimensions of the involved systems. The new system is generally structurally stable. For large 

perturbations structurally new attractors can appear as well as chaotic behavior. Combinations of 

attractors of low-dimensional systems are arbitrary and have no limits. This approach can be used for 

problems of reverse engineering also. New networks with prescribed properties can be constructed, 

combining one big network of multiple subnetworks with known attractors. This is a perspective plan 

for further study in this direction. Finally, it should be mentioned that the networks, described by systems 

of the form (1), are common in other areas. For instance, telecommunication networks of different kinds 

can be managed by using schemes, first tested on the respective mathematical model. For this, 

knowledge of substantial properties of mathematical objects, like system (1), is of great importance. 

Future states of networks described by systems of the form (1), can be calculated if the attractors and 

locations of the initial states are known. Attractors for high-dimensional systems can be constructed, 

based on the knowledge of attractors for systems of lower dimensions. The attractors, obtained by 

perturbations of the regulatory matrices W, can have similar attractors. Combinations of lower 

dimension attractors of various types are possible and should be studied. 

Conclusions 

1. Two- and three-dimensional systems of ordinary differential equations, modeling genetic networks, 

can have stable periodic solutions. 

2. A six-dimensional system, modeling genetic networks of the same size, can be constructed as an 

uncoupled system containing two or three-dimensional blocks. 

3. Attractors of six-dimensional systems can be obtained as products of attractors of lower dimensional 

systems.  

4. This method can be used for engineering purposes of constructing artificial genetic like networks 

with given properties.  

5. Perturbation of systems, obtained by this method, can produce new systems with irregular behavior 

of solutions. Studying these systems may shed light on the mechanism of creation of chaotic 

attractors.  
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